Tuesday, November 15, 2011

November 9th class

1. DNA phylogeny introduction, methods.
Vocabulary:
Primer
Alignment
DNA marker
Tree
Bootstrap value
Clade
Monophyletic
Polyphyletic
In order to understand phylogeny we must understand evolution:
The Ågmodern synthesisÅh of evolution is the combination of Darwin's and Mendel's theories.
The theory underlying the modern synthesis has three major aspects:
The common descent of all organisms from a single ancestor.
全ての生き物は共通の祖先から進化した。
The origin of novel traits in a lineage.
それぞれのグループはそれぞれの特徴を持つ。
Changes cause some traits to persist while others perish.
様々な変化によって、あるグループは生き残り、あるグループは絶滅する。
DNA and phylogenetics
All cells contain DNA - the code or blueprint of life.
全ての細胞には遺伝子が入っている。遺伝子は生き物の設計図。
This code has only four different ÅglettersÅh: A, G, C, T.
遺伝子は4つのコードしかない。
Usual length 105 to 1010 base pairs.
生き物のひとつの細胞にある遺伝子の長さは105 to 1010 。
Genome projects read everything in one organism, but takes time and expensive.
全ての遺伝子を読むことは時間とお金の無駄。
Many studies use one or a few markers to investigate relations.
遺伝子の短い部分だけでも系統関係が解析できる。
By collecting the same marker from different samples and then analyzing them, we can make a tree.
いくつかのサンプルから同じマーカーを読んで、並べてから、解析し系統樹を作る。
It is thought/hoped a tree is similar to how evolution occurred.
系統樹から進化が見えると思われる。
DNA may be a way to have non-specialists identify species quickly!
So, DNA tree = evolutionary tree (or so we hope)

In a cell, two major types of DNA we will study:
. mitochondrial DNA (mt DNA)
evolves very slow in Cnidaria (Anthozoa), opposite to most animals.
他の動物と違い、刺胞動物で進化が遅い。
b. nuclear DNA
evolves faster in Cnidaria, opposite to most animals.
他の動物と違い、刺胞動物で進化が早い。
Example DNA markers:
COI, cytochrome oxidase subunit 1 - mt DNA, used for many studies, much data available.
16S rDNA - mt DNA, useful in zoanthids! some indels, especially V5 region.

Understanding phylogenetic trees:
Calculation methods:
1. MP - maximum parsimony. Least changes. Character-based.
2. ML - maximum likelihood. Must specify evolution model. Character-based.
3. NJ - neighbour-joining. Simplest method, variable evolutionary rates, distance-based.
4. Bayes - like ML on sets of trees!
Calculation done by software.
Bootstrap values:
Values show possibility that this clade/shape is true.
Values under 50% not used.
Values >70% desirable, above 90% confident.
Bayes >95%!
Trees reflect evolution.
Can make conservation decisions from these, or taxonomic decisions.
“Reverse taxonomy”.
Other notes:
More markers better than few.
Analyses also better with many methods.
Be careful of contamination or misidentification.
Back up with other data.
In the future:
Whole genomes will become cheaper due to 454 and new technology.
Cloning? Examination of extinct species. e.g. Wooly mammoth

Part 2 – examples from zoanthids
“Reverse taxonomy” = using DNA to find species; then describing morphology:
Zoanthids (Cnidaria: Anthozoa: Hexacorallia)
• Order Zoantharia (=Zoanthidea, Zoanthiniaria)
• Sand-encrusted, colonial
• Found in most marine environments
• Often symbiotic or parasitic
• Morphologically challenging, taxonomically neglected
• Often ignored in biodiversity surveys, non-CITES
Example: specimens in the Pacific:
Specimens 0-50 m, some but not as many as there should be, very few from coral triangle.
Specimens 50-1000 m, much much less.
Specimens >1000 m, only three!


Zoanthus spp. diversity in Japan
日本のマメスナギンチャク属の多様性
• Using genetics, backed up with morphology, currently we can accurately identify three Zoanthus spp. in Japan.
• 遺伝子解析で、綺麗に三つの種類に分かれた。
• Markers used are 16S, COI (both mt DNA) and ITS-rDNA (nuclear).
• Many presumed species not true species.
• 今まで4つの種類と思われていたものは、ひとつの種類だった。
• Oral disk color not a characteristic of species.
• 色は分類ができる特徴ではない。
• Not one morphological characteristic clearly defines each species.
• 一つだけの形態的特徴で分類できない。



Shallow water sampling & research
• Evidence of reticulate evolution, intraspecific variation.
• Many new families, genera and species await description. Unexpected findings.
• Current studies often limited to specimens from Japan.
Large gaps in our knowledge
• Almost complete lack of examination in regions between Japan and Australia. Formalin specimens and lack of modern examination in Australia.
• Lack of trained taxonomists.
• Ignored in almost all biodiversity surveys.
• The deeper we go, less knowledge.
• Biogeography impossible.
Investigating Deep-sea Zoanthids
深海のスナギンチャク類

What about deep-sea zoanthids?
深海のスナギンチャクというのは?
• All described deep-sea zoanthids are placed in Epizoanthidae despite morphological and ecological differences.
• 今まで、全ての深海スナギンチャクはヤドリスナギンチャク科に分類されていた。
• No deep-sea zoanthids formally described from the Pacific.
• 太平洋の深海スナギンチャクは全く分類されていない。
• None described from limited environments.
• 極限環境(化学合成環境)のスナギンチャクの報告はあるが、サンプルや論文も無い。
• However, data literature suggests deep sea zoanthids may be quite common - underreported? Theorized to be worldwide is distribution - almost always found when specifically searched for.
• おそらく、珍しくはない。
Potential new deep sea zoanthid
謎の深海スナギンチャク?
• During Shinkai 6500 dive #884 (June 2005), several unidentified zoanthid-like samples “accidentally” collected off Muroto, Nankai Trough, depth=approx. 3300 m.
• 高知県の室戸の近くにある南海トラフで、2005年に間違えて、謎のスナギンチャクらしき生き物が採取された。水深は約3300m、冷水の極限環境。
• Back checks of images show that the sample organism is apparently quite common at the dive site.
• 画像をチェックすると、この生き物が非常に多い。
• Lives on mudstone but not loose sediment.
• 固い泥岩の上に存在、泥上には存在しない。
• No high-resolution in situ images exist.
• 綺麗な画像が無い。
• Only 12 polyps collected.
• ポリプは12個しか採取されなかった。


Deep-sea specimens
• Very limited thus far, but specimens divergent.
• Use of ROVs and manned submersibles have resulted in 1 new family, 2 new genera in Japan, several new species (3 missions).
• Found on other benthos, found in limited environments.
• Below 1000m very few samples.
External morphology
外側の形態について
• Samples appeared to be zoanthid-like based on: sand encrustation and polyp shape. No tentacle data available.
• スナギンチャクと同様に、砂を取り込んでいる。ポリプが閉じている。
• However, samples have several unique features: free-living and inhabited a deep sea methane cold seep. Morphology and ecology do not fit with any known zoanthid families.
• 単体性、極限環境の初めてのスナギンチャク。

Internal morphology?
内部の形態について?
• As expected, cross section using normal (wax-embedded) methods gave poor results.
• パラフィン切片での結果はあまりよくない。
• Attempted to set sample in epoxy resin, cut a section, and polish to necessary thickness but failed.
• レジンでの切片も無理。
• Another possibility is digestion of outer surface of polyp.
• フ酸での切片は可能だが、非常に危ない。
• Could obtain mesentery count number from rough cross-sections (19-22).
• 状態が悪い切片で、約19〜22隔膜を確認できたが、形など観察できなかった。
Genetic results
遺伝子解析の結果
• Obtained mt COI, mt16S rDNA, and 5.8S rDNA sequences confirm samples are zoanthid, but divergent from all known zoanthid families.
• 今回のサンプルはスナギンチャク目に入っているが、今まで知られているスナギンチャクと離れている。
• Particularly, divergent from all known groups of deep-sea zoanthids described.
• 特に、今までの深海のスナギンチャクと違う。
• Bootstrap support for monophyly 100% (all methods, all markers).
• 遺伝子解析の結果の確率が非常に高い。
Abyssoanthus nankaiensis n. fam, n. gen. et n. sp.
Abyssoanthus nankaiensis 新科、新属、新種
• Based on external morphology and genetic results, these samples are a new family of zoanthid: Abyssoanthidae.
• 形態、生態、遺伝子解析を含めて、今回のサンプルは新科、新属、新種。
• However, several questions remain regarding ecology and reproduction of this new family.
• 今後、日本周辺の深海で調査を行う予定。

Finally - a discussion about why DNA cannot solve everything (Milinkovitch et al. 2004).
You MUST know what specimens you are working with!

1. Chapter 4 of Molecular Markers, Natural History, and Evolution 2nd edition – JC Avise. 2004. Sinauer. Sunderland, Massachusetts.
2. Reimer et al. 2004-2008. Various papers on zoanthid phylogeny.
3. Milinkovitch et al. 2004. Molecular phylogenetic analyses indicate extensive molecular convergence between “yeti” and primates. Mol Phylogenet Evol 31: 1-3.
4. CReefs homepage: http://www.creefs.org/index_h.html

No comments:

Post a Comment